
EXTENSIONS OF PROPORTIONAL-FAIR SHARING ALGORITHMS FOR
MULTI-ACCESS CONTROL OF MOBILE COMMUNICATIONS:

CONSTRAINTS, FINITE QUEUES AND BURSTY DATA PROCESSES

Harold J. Kushner

Applied Mathematics Dept., Brown University, Providence RI 02912, USA, hjk@dam.brown.edu

Abstract We are concerned with the scheduling de-
cisions (allocation of transmitter time, bandwidth and
power) for multi-access mobile communications for data
communications when the channels are randomly time
varying. Time is divided into small scheduling intervals,
called slots, and information on the channel rates for the
various users is available at the start of the slot, when
the user selections are made. There is a conflict between
selecting the user that can get the most immediate data
through and helping users with poor average through-
puts. The Proportional Fair Sharing method (PFS) deals
with such conflicts. In [4], [6] the convergence and ba-
sic qualitative properties were analyzed via stochastic
approximation methods. The paths of the (suitably in-
terpolated) throughputs converge to the solution of an
ODE, akin to a mean flow. The behavior of the ODE
completely describes the behavior of PFS. It has a unique
equilibrium point that is asymptotically stable and op-
timal for PFS in that it is the maximizer of a concave
utility function. There is a large family of such algo-
rithms, each member corresponding to a concave utility
function. Most past work assumed an infinite backlog of
data. In many applications, the data arrival process for
some users is bursty and data is queued until transmis-
sion, there might be minimal throughput constraints, or
a balance between queue length (or delay) and through-
put sought. The fact that some queues might be empty
at times raises new issues. Natural modifications of PFS
for these cases are shown to have the same properties.
Simulations illustrate many of the unique features and
the tradeoffs that are possible,

Keywords: Proportional fair sharing, throughput con-
straints, delay constraints, multi-access control, time
varying channels

I. Introduction

Consider a multiaccess system for mobile data com-
munications, with N mobiles and (for simplicity here
only) a single base station. The rates of transmission
for each channel are randomly varying. Time is divided
into small intervals, called slots. In each slot one user
is chosen. Estimates of the possible channel rates are
available at the start of each slot, via estimates of the
SNR (signal to noise ratio), obtained by use of a pilot
signal. The user selection is based on a balance between

the current possible channel rates and “fairness.” The
PFS (proportional fair sharing) algorithm makes the se-
lection by comparing the channel rate for each user with
its average throughput to date [1], [2], [3].

The evolution of the throughput under PFS can be
written in a recursive manner, in the form of a stochas-
tic approximation (SA) [7], and SA methods used for the
analysis. The papers [4], [6] dealt with the asymptotic
and qualitative properties via SA theory. The sequence
of suitably interpolated throughputs converges to the so-
lution of a “mean” ODE that completely characterizes
the behavior of PFS. It has a unique and asymptoti-
cally stable equilibrium point θ̄ to which the through-
puts converge. This in turn, gives other properties (e.g,,
quantifying the scheduling gains over TDMA). The al-
gorithm was shown to be optimal in that it gives the
largest long term value of an associated utility function.
In analyses of PFS, it is commonly assumed that there is
an infinite backlog of data. Reference [6] also contained
results when there are explicit bursty data arrival pro-
cesses, with data queued in a finite buffer until transmit-
ted, and similar results were obtained. Some extensions
are in [5]; multiple simultaneous assignments, nonlinear
dependence of channel rate on power, and the possibility
that after a selection, a random a number of slots will be
required.

This paper continues the work, emphasizing cases
where some users are queueing bursty data arrival
streams. If a user has an infinite backlog of data, then
queueing delay is meaningless, but we might be con-
cerned with minimum throughput guarantees. For users
with queued bursty arrival streams, we suppose that
queueing delays are important. So it is natural to be con-
cerned with forms of PFS that allow reasonable tradeoffs
among delay and throughput.

The way that fairness was defined in the original PFS
concept together with the interpretation in terms of a
utility function can be exploited to obtain natural PFS
algorithms in such cases, with all of the analytical results
carrying over. Section 2 reviews the past work. Section
3 concerns extensions to bursty data, minimal through-
put constraints, and balances between throughput and
queueing delay. Simulation data is presented in Sections
4–6. These represent only a sampling of the possibilities.
They well illustrate the behavior and sensitivity to the
data structure in these cases, and provide an overview of
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the possible tradeoffs among the quantities of interest.

II. PFS Algorithms and Past Results

The original PFS algorithm: Infinite data back-
log. This section reviews some results for the original
PFS algorithm. There are N users, each with infinite
backlog, sending data to mobiles via a single transmit-
ter, with the rates or capacity of each channel varying
randomly. One user is scheduled at a time. If user
i is selected in slot n, it transmits ri,n packets, where
{ri,n, n < ∞} is a random sequence. The end of slot n is
called time n. Let Ii,n be the indicator of the event that
user i chosen for slot n. One definition of throughput up
to time n for user i is

θi,n =
n∑

l=1

ri,lIi,l/n, (2.1)

which can be written in recursive form as

θi,n+1 = θi,n + εn [Ii,n+1ri,n+1 − θi,n] , εn = 1/(n + 1).
(2.2)

A useful alternative definition of throughput discounts
past values as, for a small discount factor ε > 0,

θεi,n = (1 − ε)nθεi,0 + ε

n∑
l=1

(1 − ε)n−lri,lIi,l, (2.3)

where θεn = discounted throughput at time n. (2.3) is

θεi,n+1 = θεi,n + ε
[
Ii,n+1ri,n+1 − θεi,n

]
. (2.4)

Let di > 0, which can be as small as desired. For
positive weights wi, the original PFS algorithm chooses
the user at time n maximizing in

arg max{i : wiri,n+1/[θεi,n + di], i ≤ N} (2.5)

Algorithms (2.2) and (2.4) are of the SA form [7], and the
results of SA were used for their analysis. The approach
is able to handle quite general channel rate processes
and also arbitrary data arrival processes. The basic al-
gorithm and results are typical of a large family, indexed
by some concave utility function, and which is actually
maximized by the associated algorithm. The same ad-
vantage holds for the extensions in Section 3. The treat-
ment of (2.2) and (2.4) differs mainly in notation.

The assumptions to follow are special cases of the more
general forms in [6], but are sufficient for our purposes.
A2.3 is used to avoid degeneracy and is unrestrictive. It
holds if when a component θi is small enough then there
is a nonzero chance that user i will be chosen, no matter
what the other components are. Define θn = {θi,n, i ≤
N}, θεn = {θεi,n, i ≤ N}, and Rn = {ri,n, i ≤ N}. We will
abuse terminology by using θi and θj for the i-th and j-
th components, resp., of the vector θ. The assumptions
all hold for Rayleigh fading.

A2.1. Rn is stationary, and has a density Pr(·), with
bounded variance.
A2.2. The distribution of Rn+1, given Rl, l ≤ n, has
density pn(·) and these conditional densities are uni-
formly absolutely continuous with respect to Lebesgue
measure. The density of Rn+m, given {Rl, l ≤ n}, con-
verges to Pr(·) as m → ∞.

Let Ii(R, θ) denote the indicator of the event that user
i is selected when the channel rate and throughput vec-
tors are R, θ, resp. Define (stationary expectation)

h̄i(θ) = EriIi(R, θ). (2.6)

A2.3. There are small positive δ, δ1 such that for any i
h̄i(θ) ≥ δ1, if θi ≤ δ.
Bursty inputs and bounded queues. The above for-
mulation was for the original case where each user has an
infinite backlog of data. In many applications the data
for some users arrives at random and is queued until
transmitted. Now suppose that some users have an infi-
nite backlog and others bursty arrivals that are queued
in a finite buffer. Overflow packets are lost. This was
treated in [6] and the following is a special case of the
assumptions there, but which is adequate for our pur-
poses.
A2.4. If user i has bursty arrival data, its arrival process
is compound Poisson with bounded batches, with proba-
bility pi of an arrival to queue i in any slot, and where the
sequences of batches are independent and identically dis-
tributed, and independent of the channel rate processes.

Let Li,n denote the content of queue i at time n and
define the mean queue level

Xi,n =
n∑

l=1

Li,l/n, (2.7)

or, in recursive form,

Xi,n+1 = Xi,n + εn [Li,n+1 −Xi,n] . (2.8)

If user i has infinite backlog, set Li,n = ∞. For the case
(2.4), use εn = ε. The decision rule is now

arg max{i : wi min(ri,n+1, Li,n)/[θεi,n + di], i ≤ N}.
(2.9)

If the decision maker does not know the current queue
size, only if it is empty or not, one might use (2.5), but
it will be less efficient. The average throughput is now

θi,n =
n∑

l=1

min(ri,l, Li,l−1)Ii,l
/
n. (2.10)

Discretized rates. It is often the case that the possible
rates of transmission belong to some discrete set. Sup-
pose that the decisions are made via (2.9), but once the



choice is made, the actual transmission is the discretiza-
tion of this rate to some finite set, with the discretization
used in computing the throughputs (2.2)–(2.4) or (2.10).
Then all of the following results continue to hold.

A problem that arises in the bursty-arrival finite-buffer
case concerns empty queues. A queue might be empty for
a relatively long period. If the queue length is important
owing to its connection with delay, we might be more
concerned with mean delay only when there is queued
data, as opposed to the average over all time. Then one
might modify (2.7) and (2.10) by dividing only by the
number of times that the queue is not empty and not by
n. For simplicity we stick to definitions (2.7), (2.10).

For the present case, let Ii(R, θ, L) denote the indica-
tor that user i is selected when the channel rate, through-
put and queue length vectors are R, θ, L, resp. Define

h̄i(θ) = E min(ri, Li)Ii(R, θ, L) (2.11)

Convergence and optimality results. The usual SA
analysis uses continuous time interpolations. Define θε(·)
by θε(t) = θεn for t ∈ [nε, nε + ε). Define the continuous
time interpolation θ̃(·) of θn in (2.2) analogously, with
intervals εn in lieu of the constant ε. The next theorem
says that the limit points of (2.2) and (2.4) are contained
in those of the ODE (2.12).

Theorem 1. ([7, Theorems 2.2 and 2.3, Section 8.2].)
Assume algorithm (2.4), (2.9) and A2.1–A2.2, A2.4.
Then, as ε → 0, θε(·) converges to the solution of

θ̇i = h̄i(θ) − θi, i ≤ N. (2.12)

The same result hold for θ̃(t + ·) as t → ∞.

Limit points of PFS. The ODE (2.12) has what is
called the “cooperative” property. This fundamental
property says simply the following: If θi is increased,
then the other users are not less likely to be chosen.
More generally, an ODE ẋ = f(x) is said to be coopera-
tive if for any i and vectors x, y with x ≤ y and xi = yi,
we have fi(x) ≤ fi(y). The property implies the follow-
ing important monotonicity theorem [8, Proposition 1.1]:
Consider vectors θ0, θ1, with all components of θ1 being
no smaller than those of θ0. Then the components of the
solution starting at θ1 are no smaller than those corre-
sponding to the solution starting at θ0. The proofs in [4],
[6] of Theorems 2 and 3 use the monotonicity property
together with the strict concavity of the log function,
and both properties are essential for the extensions. The
next result says that the throughputs converge to unique
limiting values

Theorem 2 Assume rule ((2.4), (2.9)) and A2.1–A2.4.
The ODE (2.12) is cooperative and the limit point θ̄ is
unique and asymptotically stable. θεn → θ̄ as ε → 0 and
εn → ∞. For (2.2), θn → θ̄ as well, as n → ∞.

Maximizing a utility function. PFS is also optimal,
as follows. The PFS rule of (2.9) is a type of “ascent”
algorithm for the strictly concave utility function

U(θ) =
∑
i

log(di + θi). (2.13)

By a first order Taylor expansion,

U(θn+1) − U(θn) =

εn
∑
i

[min(ri,n+1, Li.n)Ii,n+1 − θi,n]/[di + θi,n] + O(ε2n).

(2.14)
Since

∑
i Ii,n+1 = 1, to maximize the first order term one

must choose Ii,n+1 by (2.9). Theorems 1–3 can be ex-
tended to algorithms based on any strictly concave utility
function, not just (2.13). This yields a family of algo-
rithms that allow different tradeoffs between the values
of the current channel rates and throughputs [6]. The
forms of the extensions are motivated by the maximiza-
tion of the first order term in such expansions. Theorem
3 asserts that the rule (2.9) maximizes U(·) [6]. The
Appendix contains some details of the proof.

Theorem 3. Under A2.1–A2.4, limn→∞ U(θn) and
limε→0,n→∞ U(θεn) are maximized over all feasible alter-
natives.

III. Extensions

Minimum throughput constraints for some users
with infinite backlog. Now let there be constraints
on the minimum throughput in that we desire θi ≥ ai.
Set ai = 0 if no minimum is desired. If the current
θi value is less than ai then user i needs to be given
some advantage in that it should be selected even for
some channel rates that are lower than what (2.9) would
require. But how much advantage ? Overall efficiency
is still a concern, and user i should not be selected if
its current channel rate is too low. This reasoning (see
also the discussion in Section 4) argues against the use of
hard constraints. We use the following “soft” approach.
For each i, let qi(θi) be a differentiable penalty function
which is zero if θi ≥ ai, negative for θi < ai, and whose
derivative qi,θi(θi) is non decreasing in θi as θi decreases.
For example, qi(θi) = Ki max{0, |θi − ai|(θi − ai)},Ki >
0. Analogously to the role of (2.14) in getting (2.9), let
the decision rule maximize the first order term in the
expansion of U(θn+1) − U(θn) where

U(θ) =
∑

[wi log(θi + di) + qi(θi)], (3.1)

a strictly concave function (or with another desired
strictly concave function used in lieu of the log). This
yields the rule

arg max
i

{
min(ri,n+1, Li,n)

[
wi

θi,n + di
+ qi,θi(θi,n)

]}
,

(3.2)



where qi,θi(·) is the derivative of qi(·) with respect to θi.
Theorems 1–3 still hold under A2.1-A2.4. The ODE is
(2.12) with the indicator function Ii(R, θ, L) being that
arising from the decision rule (3.2).

The use of the penalty function allows flexibility near
the boundaries ai, since the choice will depend on both
the current channel rates and by how much the constraint
is violated. The use of penalty functions does not assure
that the constraints will be satisfied. They might not be
feasible. But it does give an advantage to users whose
throughput is less than desired, and it puts a price on
constraint violations.
Weighing both throughput and queue length. So
far, we have been concerned with throughputs, with or
without constraints on the minimal values. Some users
whose input processs are bursty might be concerned with
queueing delays as well as assuring that all the inputs
are eventually transmitted. Let B denote the set of such
users. This need can be accomodated by the use of the
utility function, where the Hi(·) are strictly convex,

U(θ,X) =
∑
i

wi log(θi + di) −
∑
i∈B

Hi(Xi), (3.3)

The decision rule corresponding to (3.3) is

arg max
i

{
min(ri,n+1, Li,n)

[
wi

θi + di
+ Hi,Xi

(Xi)
]}

.

(3.4)
Let Ii(R, θ, L,X) denote the indicator that user i is se-
lected when the channel rate, throughput, queue length,
and sample mean queue length vectors are R, θ, L,X,
resp. Then the ODEs for throughput and mean queue
length are (with āi= mean input rate for user i)

θ̇i = E min{ri, Li}Ii(R, θ, L,X) − θi,

Ẋi = ELi −Xi.

Other extensions. These are only a few of the possible
extensions. One can constrain minimum throughputs for
users with infinite backlog and the maximum mean queue
length for users with bursty inputs. One just subtracts
appropriate strictly convex constraint functions from the
utility function.

IV. Numerical Data: Minimum Throughput
Constraints

The model data: The arrival and channel rate
processes. A sampling of numerical data for two-user
problems is discussed in this and in the next two sections.
This section deals with minimum throughput constraints
on the user with infinite backlog. Section 5 deals with
classical PFS with varying weights, when both users have
bursty input processes. In Section 6, both queues have
bursty inputs, and the queue length is also weighted in
the decision, as in (3.3), (3.4).

There are two classes of users, those with infinite back-
log and those with bursty arrival processes. In all bursty
arrival cases, the input processes were compound Pois-
son, with rate 0.1 and the batches uniformly distributed
in [0,20], so that average arrival rate/slot is 1.0. Us-
ing smaller arrival probabilities and larger batch sizes
(but with the same mean value) led to similar results,
but with the mean queue levels larger, being a little
less than proportional to the batch size. The channel
rate processes were mutually independent. Two types of
channel rate processes were used. For the first, the chan-
nel rates were mutually independent and took values in
the interval [0, A]. This is referred to as the iid[0, A] case.
The value of A was either 5 or 7.5, yielding mean chan-
nel rates/user that would be either 2.5/2 or 3.25/2, if
the channel was equally divided between the two users.
The other channel rate process was a simple first order
Markov process, defined by ri,n+1 = .8ri,n+ξi,n+1, where
the ξ were uniformly distributed on either [0,1] or [0,1.5].
These have the same means as the two iid cases, and are
referred to as correl[0, A], with A being either 1 or 1.5.
Similar conclusions hold for more complex correlations.
In all cases the listed values of θi, Xi were the averages
of the end values of several very long runs.

The main issues are the possible tradeoffs between the
quantities of interest, the θi and Xi, and the price to
be paid on the others for a given improvement in one of
them. The tables illustrate the possibilities.
Minimum throughput constraints. Consider the
first model of Section 3, with user 1 having an infinite
backlog, and user 2 bursty arrivals. There is a mini-
mum throughput constraint for user 1, with constraint
function q1(θ1) = (2K/3)([a1 − θ1]+)3/2. Other strictly
convex constraint functions gave results similar to those
below.

Consider Table 4.1. The first row is just unconstrained
PFS. The θ2 are all unity since all of users 2’s inputs
are eventually transmitted. In all cases the sums of
the throughputs is greater than 2.5, the average chan-
nel rate/slot over the two channels. The value K = 0.5
achieves the minimal desired throughput (for about a 10
percent increase in θ1 over the first line, but at the cost
of nearly doubling X2. If K is increased to 1.0, X2 more
than doubles again. With the larger K, user 1 effectively
becomes “more aggressive,” and is more likely to be se-
lected when its throughput is less than the desired value.
The average throughput increases as K increases, since
all of user 1’s data are transmitted. The value of X2

will become infinite if K increases much beyond K = 1.
These facts argue against using a hard constraint, under
which user 1 is always selected if its current throughput
is less than the desired level. They also underline the
importance of understanding the possible tradeoffs, so
that an excessive value of K is not used. The numbers
are better than they seem, if we keep in mind that the



queue for user 2 is often empty or small. Then user 1 is
always selected, whether its current channel rate is good
or not.

Table 4.1. Min. Constr. on user 1
iid[0,5], user 2-bursty input

K a1 θ1 θ2 X2

0.0 n.a. 1.79 1 6.23
0.2 2 1.88 1 7.55
0.5 2 2 1 12.33
1 2 2 1 26.5
2 2 2 1 132

Table 4.2. Min. Constr. on user 1
correl[0,1], user 2-bursty input

K a1 θ1 θ2 X2

0.0 n.a. 1.5 1 6.1
0.2 2 1.6 1 10.44
0.3 2 1.64 1 16.9
0.5 2 1.75 1 699
1 2 1.97 .75 ∞

Table 4.3. Min. Constr. on user 1
iid[0, 7.5], user 2-bursty input

K a1 θ1 θ2 X2

0.0 n.a. 2.88 1 3.29
0.5 3.25 3.18 1 4.87
1 3.25 3.25 1 8.66
1.5 3.25 3.25 1 13.74

Comparing Table 4.1 with 4.2 (which has the same
mean channel rates), we see that the throughputs de-
crease and the unstable point for user 2 is reached earlier
as the correlation of the channel rate process increases.
This seems to be the general case; correlation in the chan-
nel rate process hurts throughputs and queue lengths.
Under correlation, the rate process has less variability so
that it is harder to exploit variations in the rates to im-
prove the operation. Note that for K = 1, the queue for
user 2 is unstable, and only .97 of its inputs are trans-
mitted.

Table 4.3 is for the iid channel rate process, but with
a mean channel rate of 3.25, a fifty percent increase over
that of Table 4.1. Owing to the greater excess capacity,
it is easier to satisfy the constraint and, at best, we have
a total throughput of 4.25, compared to the channel av-
erage of 3.25. A heavy penalty (in terms of X2) is paid
for assuring a throughput θ1 = 3.18 vs θ1 = 3.25. In-
deed, one must always take care to understand the cost
of reducing one variable in terms of the increase in other
variables.

V. Classical PFS, Both With Bursty Inputs,
and With Varying Weights

In this section both users having bursty inputs. Tables
5.1 and 5.2 present an alternative way of getting trade-
offs between queue lengths, hence between delays. By
varying the wi in (2.9), one can graph the set of possible
pairs X1, X2. The queues are longer in the correlated

channel rate case, as is the sensitivity of the length of
the queue with the unit weight to the value of the one
with the larger weight, possibly due to the fact that once
a user is selected, it is more than likely to be selected in
the next few slots as well. In addition, there is less “ef-
fective” variability of the channel rates in the correlated
case, thereby reducing the opportunities.

Table 5.1. PFS
iid[0, 5], Bursty inputs
w1, w2 X1 X2

1, 1 7.3 7.3
1, 2 11.4 5.5
1, 3 14.2 5.2

Table 5.2. PFS
correl[0,1], Bursty inputs.
w1, w2 X1 X2

1, 1 10.6 10.6
1, 1.5 20.8 5.6
1, 2 23 5
1, 3 25.1 4.86

VI. PFS with Varying Weights on Queue
Length

In this example, the delay for user 2 is more impor-
tant than that of user 1, and this is treated by putting
an explicit penalty on user 2’s queue length. It is an al-
ternative to the approach of the last section. In Tables
6.1–6.4, the utility function and decision rule are (3.3)
and (3.4), resp. Both users have bursty input processes,
but there is a penalty on the queue length of user 2, with
H1(X1) = 0, H2(X2) = (2K/3)|X2|3/2. The results were
similar with other penalty functions.

Table 6.1.
iid,[0 5], mean/user= 2.5,

w1, w2 K X1 X2

1, 1 0, 0 7.3 7.3
1, 1 0, .5 12.2 5.45
1, 1 0, 1 15.1 5.13
1, 1 0, 2 18.94 5

Table 6.2.
correl =.8, mean/user= 2.5,
w1, w2 K X1 X2

1, 1 0, 0 10.6 10.6
1, 1 0, .3 22 5.17
1, 1 0, .5 24.3 5
1, 1 0, 1 25.4 4.84
1, 1 0, 2 26.6 4.83

Table 6.3.
iid,[0 7.5], mean/user= 3.25

w1, w2 K X1 X2

1, 1 0, .3 4.2 3.3
1, 1 0, .5 4.46 3.2
1, 1 0, 1.5 5.2 3.1
1, 1 0, 10 6.453 3.02



Table 6.4
correl=.8, mean/user= 3.25
w1, w2 K X1 X2

1, 1 0, .1 4.66 3.5
1, 1 0, .3 5.4 3.1
1, 1 0, 1 6 2.9
1, 1 0, 5 6.3 2.86

By graphing the pairs X1, X2 as the weight K varies,
we can get a good understanding of the possible tradeoffs
and the implicit price associated with a decrease in X2.
As K increases, in all cases the marginal improvement
in X2 goes to zero, and the ratio of the improvement in
X2 to the increase in X1 goes to infinity rapidly, a fact
that is not obvious a priori. This holds no matter what
the excess capacity is. So, the choice of weight can be a
delicate matter. The behavior of the correlated channel
rate case is similar to that in Section 5 and probably for
the same reason.

VII. Appendix: Some details of the proof for
Minimum Throughput Constraints

The proofs of the extensions involve little change from
those in [6], and there is little space for development. We
will comment briefly on one part of the proof of Theo-
rem 3 for the minimum throughput constraints for the
infinite backlog case. For simplicity in notation, we work
with (2.4). The proof in [6] first used the monotonicity
property and the strict concavity of the utility function
to show that all paths of the solution θ(·) to (2.12) end
up at a unique stable point θ̄, which is also the limit
of the throughput processes under PFS. Define the set
Q(θ̄) = {θ : θi ≥ θ̄i, i ≤ N}. Here we use the util-
ity function (3.1). For notational simplicity we use the
throughput definition (2.4). Suppose that there is some
assignment Îi,n, i ≤ N, under which the average through-
put converges to a vector θ̂, where U(θ̂) > U(θ̄). Thus θ̂
must be in Q(θ̄).

Now, consider the algorithm, started at θ̄, but with
the alternative assignment rule Îi,n, i ≤ N, used. The
Ii,n, i ≤ N, still denotes the assignment given by (2.9)
at whatever the current value of θεn (determined by the
policy Îi,n, i ≤ N) is. Then, modulo an error of order
O(ε)t that is due to the first term in the Taylor expansion
only being taken, the maximization in (3.2) yields

U(θε(t)) − U(θ̄)

= ε
∑
i

[t/ε]−1∑
l=0

[
wi

θεi,n + di
+ qi,θi(θ

ε
i,l)

] (
ri,l+1Îi,l+1 − θεi,l

)

≤ ε
∑
i

[t/ε]−1∑
l=0

[
wi

θεi,n + di
+ qi,θi(θ

ε
i,l)

] (
ri,l+1Ii,l+1 − θεi,l

)
(7.1)

where [t/ε] = integer part of t/ε.
The convergence of the throughput to θ̂ under Îi,n, i ≤

N, together with (7.1), implies that as ε → 0 (hence

θε(·) → θ(·), a continuous function)

U(θ(t)) − U(θ̄)

=
∫ t

0

∑
i

[
wi

di + θi(s)
+ qi,θi(θi(s))

](
θ̂ − θi(s)

)
ds

≤
∫ t

0

∑
i

[
wi

di + θi(s)
+ qi,θi(θi(s))

] (
h̄i(θ(s)) − θi(s)

)
ds.

This and the fact that θ̄ is an equilibrium point of the
ODE (2.12) implies that

U̇(θ(t))
∣∣
t=0

=
∑
i

[
wi

di + θ̄i
+ qi,θi(θ̄i)

](
θ̂i − θ̄i

)

≤
∑
i

[
wi

di + θ̄i
+ qi,θi(θ̄i)

] (
h̄i(θ̄) − θ̄i

)
= 0.

Since the term on the right of the first line is positive,
there is a contradiction to the existence of θ̂. Conse-
quently, PFS gives an optimal assignment rule for the
given utility function.
Conclusions. We obtain effective PFS algorithms for
conditions of bursty data, minimal throughput con-
straints, and where a balance between throughput and
queueing delay is required. The analytical results con-
cerning convergence and qualitative properties for the
classical cases carry over. Simulations illustrate the be-
havior and sensitivity to the data structure in these cases,
and provide an overview of the possible tradeoffs among
the quantities of interest.
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